Solid-Phase Synthesis of Thiazolo[4,5-b]pyridine Derivatives using Friedländer Reaction

Taeho Lee,* Doohyun Lee, Ill Young Lee, Young-Dae Gong*

Contents

General Experimental Method S2
Full experimental procedures and analytical data of compounds S3-S23
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and LC-MS spectra of compounds $\mathbf{4 a}$ and $\mathbf{1 a}$ S24-S26
${ }^{1} \mathrm{H}$ NMR and LC-MS spectra of compounds $\mathbf{1 b} \mathbf{- 1 a x}$ S27-S75

General. All chemicals were reagent grade and used as purchased. The Merrifield resin (loading capacity $0.94 \mathrm{mmol} / \mathrm{g}, 100-200 \mathrm{mesh}$) was purchased from BeadTech. Reactions were monitored by TLC analysis using Merck silica gel 60 F-254 thin layer plates or ATR-FRIR analysis using TravelIR ${ }^{\mathrm{TM}}$ (SensIR Technology). Flash column chromatography was carried out on Merck silica gel 60 (230-400 mesh). The microwave instrument was the Automated Microwave Synthesis System (Emrys Creator). On solid-phase synthesis, reactions, filtration, and washing were carried out on a MiniBlock (Bohdan) and solvent evaporation was performed on a GeneVac Atlas HT-4 centrifugal vacuum evaporator. The crude products were purified by parallel chromatography using Quad $3{ }^{\text {TM }} .{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in δ units relative to deuterated solvent as internal reference by Bruker 500 MHz NMR instrument. LC-MS analysis was performed on ESI mass spectrometer with PDA detection. LC-MS area\% purities of all products were determined by LC peak area analysis (XTerraMS C18 column, $4.6 \mathrm{~mm} \times 100 \mathrm{~mm}$; PDA detector at 200-400 nm; gradient, $5-95 \% \mathrm{CH}_{3} \mathrm{CN} / / \mathrm{H}_{2} \mathrm{O}$).

2-(Methylthio)-9-phenyl-5,6,7,8-tetrahydrothiazolo[4,5-b]quinoline (4a).

To a solution of [4-amino-2-(methylthio)thiazol-5-yl](phenyl)methanone (2a) ${ }^{7}$ ($50 \mathrm{mg}, 0.20 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ were added cyclohexanone (3) $(0.042 \mathrm{~mL}, 0.40 \mathrm{mmol})$ and aluminium chloride ($80 \mathrm{mg}, 0.60 \mathrm{mmol}$). The reaction vessel was sealed, and then the mixture was irradiated for 15 min at $150{ }^{\circ} \mathrm{C}$. After cooled to room temperature, the reaction mixture was quenched with brine and extracted with EtOAc , dried over MgSO_{4}. The solvent was removed and the residue was purified by flash silica gel column chromatography (hexane/EtOAc, 5:1) to give thiazolopyridine $\mathbf{4 a}$ (57 mg , $91 \%)$ as a light yellow solid: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.75(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{t}, \mathrm{J}=$ $6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.48 ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 15.8,22.9,23.0,27.4,33.2,125.8,127.4,127.9,128.6,128.9,138.0$, 143.3, 1256.5, 161.5, 171.8; LC-MS (ESI) $m / z 313\left([\mathrm{M}+1]^{+}\right)$.

N-Benzyl-9-phenyl-5,6,7,8-tetrahydrothiazolo[4,5-b]quinolin-2-amine (1a).

To a solution of thizolopyridine $\mathbf{4 a}(50 \mathrm{mg}, 0.16 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was slowly added m chloroperbenzoic acid ($108 \mathrm{~g}, 0.48 \mathrm{mmol}, 77 \% \max$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 2 h and then quenched with $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. After being stirred for additional 10 min , it was then diluted with saturated NaHCO_{3} solution, extracted twice with EtOAc. The combined organic layers were washed with brine, dried over MgSO_{4}, and filtered. The residue was concentrated under reduced pressure to afford the crude sulfonate $\mathbf{5}$ as a white solid. To a solution of crude 5 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ were added benzylamine ($0.052 \mathrm{~mL}, 0.48 \mathrm{mmol}$), and triethylamine $(0.067 \mathrm{~mL}, 0.48 \mathrm{mmol})$ at room temperature. This reaction mixture was stirred at room temperature for 5 h . After the reaction was concentrated, the crude product was purified by
silica gel column chromatography (hexane/EtOAc, 3:2) to give the desired thiazolo[4,5-b]pyridine 1a $\left(36 \mathrm{mg}, 61 \%\right.$ from 4a) as a yellow solid: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.72(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{~m}$, $2 \mathrm{H}), 2.54(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 5.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.27-7.38(\mathrm{~m}$, 7H), 7.39-7.48 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.1,23.2,27.2,33.1,48.8,123.0,123.2$, 127.7, 127.8, 128.0, 128.3, 128.7, 128.8, 137.5, 138.6, 142.9, 155.1, 161.5, 168.5; LC-MS (ESI) m / z $372\left([\mathrm{M}+1]^{+}\right)$.

General procedure for preparation of 2,5,6,7-tetrasubstituted thiazolo[4,5-b]pyridines 1 on solid-phase. A typical procedure for preparing 2,5,6,7-tetrasubstituted thiazolo[4,5-b]pyridine, as exemplified for N-benzyl-9-phenyl-5,6,7,8-tetrahydrothiazolo[4,5-b]quinolin-2-amine (1a).

Preparation of cyanocarbonimidodithioate resin 6.

Merrifield resin $7(30.0 \mathrm{~g}, 28.2 \mathrm{mmol}, 0.94 \mathrm{mmol} / \mathrm{g})$ was treated with dipotassium cyanodithioimidocarbonate $(\mathbf{8})^{11}(21.9 \mathrm{~g}, 112.7 \mathrm{mmol})$ in DMF (300 mL). The mixture was shaken at room temperature for 5 h , and then filtered, washed several times with $\mathrm{H}_{2} \mathrm{O}$, $\mathrm{DMF}, \mathrm{MeOH}$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and dried in a vacuum oven to give cyanocarbonimidodithioate resin 6 (34.0 g): On-bead ATR-FTIR (neat) 2170, 1374, $954\left(\mathrm{~cm}^{-1}\right)$.

Preparation of thiazole resin $10\left(\mathbf{R}^{1}=\mathbf{P h}\right)$.

A mixture of resin $6(5.00 \mathrm{~g}$, theoretically 4.36 mmol), 2-bromoactophenone (9) (3.42 g, 17.2 $\mathrm{mmol})$, and triethylamine ($2.55 \mathrm{~mL}, 18.3 \mathrm{mmol}$) in DMF (50 mL) was heated at $80^{\circ} \mathrm{C}$ for 6 h . The reaction mixture was cooled to room temperature, and then filtered, washed several times with

DMF, MeOH , and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and dried in a vacuum oven to give thiazole resin $10(5.38 \mathrm{~g})$: On-bead ATR-FTIR (neat) $3469,3321,1600,1377\left(\mathrm{~cm}^{-1}\right)$.

Preparation of thiazolpyridine resin $11\left(\mathbf{R}^{1}=\mathbf{P h}, \mathbf{R}^{2}\right.$ and $\left.\mathbf{R}^{3}=-\left(\mathbf{C H}_{2}\right)_{4}-\right)$.

The thiazole resin $\mathbf{1 0}$ (4.61 g , theoretically 3.65 mmol) was treated with cyclohexanone (1.15 mL , $11.0 \mathrm{mmol})$ and aluminium chloride ($1.48 \mathrm{~g}, 11.0 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$. The reaction vessel was sealed, and then the mixture was irradiated for 15 min at $150{ }^{\circ} \mathrm{C}$. After cooled to room temperature, the reaction mixture was filtered, washed several times with $\mathrm{H}_{2} \mathrm{O}$, $\mathrm{DMF}, \mathrm{MeOH}$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and dried in a vacuum oven to give the desired resin $\mathbf{1 1}$ (4.79 g): On-bead ATR-FTIR (neat) 1334, $999\left(\mathrm{~cm}^{-1}\right)$.

Preparation of sulfonyl thiazolo[4,5-b]pyridine resin $12\left(\mathbf{R}^{1}=\mathbf{P h}, \mathbf{R}^{2}\right.$ and $\left.\mathbf{R}^{\mathbf{3}}=-\left(\mathbf{C H}_{2}\right)_{4}-\right)$.

To a mixture of sulfanyl resin $11(4.38 \mathrm{~g}$, theoretically 3.30 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added m chloroperbenzoic acid $(2.96 \mathrm{~g}, 13.2 \mathrm{mmol}, 77 \% \max)$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was shaken at room temperature for 2 h , and then quenched with saturate NaHCO_{3} solution, filtered, washed several times with $\mathrm{H}_{2} \mathrm{O}$, DMF, MeOH , and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and dried in a vacuum oven to give sulfonyl resin $\mathbf{1 2}(4.39 \mathrm{~g})$: On-bead ATR-FTIR (neat) 1331, 1152, $1029\left(\mathrm{~cm}^{-1}\right)$.

Preparation of thiazolo[4,5-b]pyridine $1 a\left(\mathbf{R}^{1}=\mathbf{P h}, \mathbf{R}^{2}\right.$ and $\left.\mathbf{R}^{3}=-\left(\mathbf{C H}_{2}\right)_{4}, \mathbf{R}^{4} \mathbf{R}^{5} \mathbf{N}=\mathbf{N H B n}\right)$.

The sulfonyl resin 12 (200 mg , theoretically 0.15 mmol) in THF (2 mL) was swollen for 5 min . The reaction mixture was then treated with benzylamine $(0.065 \mathrm{~mL}, 0.60 \mathrm{mmol})$ and triethylamine $(0.060 \mathrm{~mL}, 0.60 \mathrm{mmol})$. After the reaction mixture was shaken at $60^{\circ} \mathrm{C}$ for 5 h , the reaction mixture was filtered, washed several times with MeOH and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and concentrated under reduced pressure in a centrifugal vacuum evaporator. The residue was purified by parallel chromatography to give the desired thiazolo[4,5-b]pyridine 1a (18 mg, 34% from Merrifield resin 7). The analytical and spectroscopic data of 1a was identical to those of the corresponding product from solutionphase route.

N-(4-Methoxybenzyl)-9-phenyl-5,6,7,8-tetrahydrothiazolo[4,5-b]quinolin-2-amine (1b).

Molecular Weight: 401.52
Isolated yield: 29%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.69-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.91(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{t}, J$ $=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 5.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.48(\mathrm{~m}, 2 \mathrm{H})$; LC-MS (ESI) $m / z 402\left([\mathrm{M}+1]^{+}\right)$.

9-Phenyl- N-propyl-5,6,7,8-tetrahydrothiazolo[4,5-b]quinolin-2-amine (1c).

Molecular Weight: 323.46
Isolated yield: $35 \% .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.53-1.55(\mathrm{~m}, 4 \mathrm{H})$, $1.57-1.58(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.73$ (br s, 1H), 7.31-7.34 (m, 2H), $7.41(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.49(\mathrm{~m}, 2 \mathrm{H})$; LC-MS (ESI) m/z $324\left([\mathrm{M}+1]^{+}\right)$.

N-(Cyclohexylmethyl)-9-phenyl-5,6,7,8-tetrahydrothiazolo[4,5-b]quinolin-2-amine (1d).

Isolated yield: 27%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 0.93-1.99 (m, 2H), 1.09-1.29 (m, 3H), 1.64-1.78 (m, 8H), 1.84-1.90 (m, 2H), 2.53 (t, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, 2H), 5.26 (br s, 1H), 7.31-7.34 (m, 2H), 7.42 (m, 1H), 7.44-7.49 (m, 2H); LC-MS (ESI) m/z 378 $\left([M+1]^{+}\right)$.

N, N-Diethyl-9-phenyl-5,6,7,8-tetrahydrothiazolo[4,5-b]quinolin-2-amine (1e).

Molecular Weight: 337.48
Isolated yield: $27 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.69-1.74(\mathrm{~m}, 2 \mathrm{H})$, $1.85-1.90(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.51-3.57(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.35$ (m, 2H), $7.42(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.49(\mathrm{~m}, 2 \mathrm{H})$; LC-MS (ESI) $m / z 338\left([\mathrm{M}+1]^{+}\right)$.

9-Phenyl-2-(pyrrolidin-1-yl)-5,6,7,8-tetrahydrothiazolo[4,5-b]quinoline (1f).

Molecular Weight: 335.47
Isolated yield: 29%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.69-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.85-1.91(\mathrm{~m}, 2 \mathrm{H}), 2.02-2.06$ $(\mathrm{m}, 4 \mathrm{H}), 2.54(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.43-3.59(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.35(\mathrm{~m}, 2 \mathrm{H})$, $7.41(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.49(\mathrm{~m}, 2 \mathrm{H})$; LC-MS (ESI) $\mathrm{m} / \mathrm{z} 336\left([\mathrm{M}+1]^{+}\right)$.

9-Phenyl-2-(piperidin-1-yl)-5,6,7,8-tetrahydrothiazolo[4,5-b]quinoline (1g).

Molecular Weight: 349.49
Isolated yield: $33 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.61-1.68(\mathrm{~m}, 6 \mathrm{H}), 1.69-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.89$ $(\mathrm{m}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.55-3.62(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.34(\mathrm{~m}, 2 \mathrm{H})$, $7.40(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.48(\mathrm{~m}, 2 \mathrm{H}) ;$ LC-MS (ESI) $\mathrm{m} / \mathrm{z} 350\left([\mathrm{M}+1]^{+}\right)$.

4-(9-Phenyl-5,6,7,8-tetrahydrothiazolo[4,5-b]quinolin-2-yl)morpholine (1h).

Isolated yield: 31%. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.71-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.91(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{t}, \mathrm{J}$ $=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.76(\mathrm{t}, J=3.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.31-7.35$ (m, 2H), 7.40-7.50 (m, 3H); LC-MS (ESI) $m / z 352\left([\mathrm{M}+1]^{+}\right)$.

N-Benzyl-8-phenyl-6,7-dihydro-5H-cyclopenta[e]thiazolo[4,5-b]pyridin-2-amine (1i).

Molecular Weight: 357.47
Isolated yield: $16 \% .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.08-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{t}, J=7.2, \mathrm{~Hz}, 2 \mathrm{H})$, $3.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 5.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.28-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.46-7.52(\mathrm{~m}, 4 \mathrm{H}) ;$ LC-MS (ESI) $m / z .358\left([\mathrm{M}+1]^{+}\right)$.

N-(4-Methoxybenzyl)-8-phenyl-6,7-dihydro-5H-cyclopenta[e]thiazolo[4,5-b]pyridin-2-amine

 (1j).

Molecular Weight: 387.50
Isolated yield: $21 \% .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.12(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 5.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.42(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.50(\mathrm{~m}, 4 \mathrm{H})$; LC-MS (ESI) m/z 388 ([M+1] $\left.{ }^{+}\right)$.

8-Phenyl- N -propyl-6,7-dihydro-5H-cyclopenta[e]thiazolo[4,5-b]pyridin-2-amine (1k).

Molecular Weight: 309.43

Isolated yield: 19%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.98(\mathrm{t} . J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.66-1.73(\mathrm{~m}, 2 \mathrm{H}), 2.12$ (tt, $J=7.4,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.42(\mathrm{~m}$, $1 \mathrm{H}), 7.46-7.52(\mathrm{~m}, 4 \mathrm{H})$; LC-MS (ESI) $m / z 310\left([\mathrm{M}+1]^{+}\right)$.

8-Phenyl-2-(pyrrolidin-1-yl)-6,7-dihydro-5H-cyclopenta[e]thiazolo[4,5-b]pyridine (11).

Isolated yield: $13 \% .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.04-2.07(\mathrm{~m}, 4 \mathrm{H}), 2.11(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 3.08(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.51-3.63(\mathrm{~m}, 4 \mathrm{H}), 7.42(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.55(\mathrm{~m}, 4 \mathrm{H})$; LC-MS (ESI) $m / z 322\left([\mathrm{M}+1]^{+}\right)$.

4-(8-Phenyl-6,7-dihydro-5H-cyclopenta[e]thiazolo[4,5-b]pyridin-2-yl)morpholine (1m).

Molecular Weight: 337.44
Isolated yield: $17 \% .^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.08-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=7.3, \mathrm{~Hz}, 2 \mathrm{H})$, $3.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.63-3.68(\mathrm{~m}, 4 \mathrm{H}), 3.78-7.83(\mathrm{~m}, 4 \mathrm{H}), 7.43(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.54(\mathrm{~m}, 4 \mathrm{H})$; LC-MS (ESI) $m / z 338\left([\mathrm{M}+1]^{+}\right)$.
N-Benzyl-10-phenyl-6,7,8,9-tetrahydro-5H-cyclohepta[e]thiazolo[4,5-b]pyridin-2-amine (1n).

Isolated yield: $50 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.35-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.89$ $(\mathrm{m}, 2 \mathrm{H}), 2.65-2.69(\mathrm{~m}, 2 \mathrm{H}), 3.14-3.18(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 5.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.26-7.38(\mathrm{~m}, 7 \mathrm{H})$, $7.42(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.48(\mathrm{~m}, 2 \mathrm{H})$; LC-MS (ESI) $\mathrm{m} / \mathrm{z} 386\left([\mathrm{M}+1]^{+}\right)$.
N-(4-Methoxybenzyl)-10-phenyl-6,7,8,9-tetrahydro-5H-cyclohepta[e]thiazolo[4,5-b]pyridin-2amine (10).

Molecular Weight: 415.55
Isolated yield: 43%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.56-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.88$ $(\mathrm{m}, 2 \mathrm{H}), 2.65-2.69(\mathrm{~m}, 2 \mathrm{H}), 3.13-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 5.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.48(\mathrm{~m}, 3 \mathrm{H}) ;$ LC-MS (ESI) $m / z 416\left([\mathrm{M}+1]^{+}\right)$.

10-Phenyl- N-propyl-6,7,8,9-tetrahydro-5H-cyclohepta[e]thiazolo[4,5-b]pyridin-2-amine (1p).

Molecular Weight: 337.48
Isolated yield: $48 \% .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.58(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{q}, J$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.87(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.67(\mathrm{~m}, 2 \mathrm{H}), 3.13-3.15(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{t}$, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), $5.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.30-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.50(\mathrm{~m}, 3 \mathrm{H})$; LC-MS (ESI) m/z 338 $\left([\mathrm{M}+1]^{+}\right)$.

10-Phenyl-2-(pyrrolidin-1-yl)-6,7,8,9-tetrahydro-5H-cyclohepta[e]thiazolo[4,5-b]pyridine (1q).

Molecular Weight: 349.49
Isolated yield: $34 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.55-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.87$ $(\mathrm{m}, 2 \mathrm{H}), 2.01-2.05(\mathrm{~m}, 4 \mathrm{H}), 2.64-2.67(\mathrm{~m}, 2 \mathrm{H}), 3.13-3.15(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.58(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.34(\mathrm{~m}$, 2H), $7.42(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.50(\mathrm{~m}, 2 \mathrm{H})$; LC-MS (ESI) $m / z 350\left([\mathrm{M}+1]^{+}\right)$.

4-(10-Phenyl-6,7,8,9-tetrahydro-5H-cyclohepta[e]thiazolo[4,5-b]pyridin-2-yl)morpholine (1r).

Molecular Weight: 365.49
Isolated yield: 37%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.56-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.88$ $(\mathrm{m}, 2 \mathrm{H}), 2.66-2.70(\mathrm{~m}, 2 \mathrm{H}), 3.14-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.64(\mathrm{~m}, 4 \mathrm{H}), 3.76-3.79(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.33(\mathrm{~m}$, $2 \mathrm{H}), 7.43(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.50(\mathrm{~m}, 2 \mathrm{H})$; LC-MS (ESI) $m / z 366\left([\mathrm{M}+1]^{+}\right)$.
N-Benzyl-5-ethyl-6-methyl-7-phenylthiazolo[4,5-b]pyridin-2-amine (1s).

Molecular Weight: 359.49
Isolated yield: 24%. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{q}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 5.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.27-7.37(\mathrm{~m}, 7 \mathrm{H}), 7.42(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.49(\mathrm{~m}, 2 \mathrm{H})$; LC-MS (ESI) $m / z 360\left([\mathrm{M}+1]^{+}\right)$.

5-Ethyl- N-(4-methoxybenzyl)-6-methyl-7-phenylthiazolo[4,5-b]pyridin-2-amine (1t).

Molecular Weight: 389.51
Isolated yield: $31 \% .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{q}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 5.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, \mathrm{H}), 7.29(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, 2H), 7.31-7.34 (m, 2H), $7.41(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.49(\mathrm{~m}, 2 \mathrm{H})$; LC-MS (ESI) m/z $390\left([\mathrm{M}+1]^{+}\right)$.

5-Ethyl-6-methyl-7-phenyl- N-propylthiazolo[4,5-b]pyridin-2-amine (1u).

Molecular Weight: 311.44
Isolated yield: 39%. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.69(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.37-3.43(\mathrm{~m}, 2 \mathrm{H}), 5.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.32-7.35(\mathrm{~m}$, 2H), $7.42(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.50(\mathrm{~m}, 2 \mathrm{H})$; LC-MS (ESI) $m / z 312\left([\mathrm{M}+1]^{+}\right)$.

5-Ethyl-6-methyl-7-phenyl-2-(pyrrolidin-1-yl)thiazolo[4,5-b]pyridine (1v).

Molecular Weight: 323.46
Isolated yield: 33%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$), 2.02-2.04 (m, 4H), 2.15 (s, 3H), $2.90(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.46-3.63(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.46-$ $7.50(\mathrm{~m}, 2 \mathrm{H})$; LC-MS (ESI) $m / z 324\left([\mathrm{M}+1]^{+}\right)$.

4-(5-Ethyl-6-methyl-7-phenylthiazolo[4,5-b]pyridin-2-yl)morpholine (1w).

Molecular Weight: 339.45
Isolated yield: 26%. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{q}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.62-3.66(\mathrm{~m}, 4 \mathrm{H}), 3.77-3.80(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.51(\mathrm{~m}$, 2H); LC-MS (ESI) $m / z 340\left([\mathrm{M}+1]^{+}\right)$.

2-(Benzylamino)-9-phenyl-6,7-dihydrothiazolo[4,5-b]quinolin-8(5H)-one (1x).

Molecular Weight: 385.48
Isolated yield: $23 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.17(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{~d}$, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 6.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.24-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.37(\mathrm{~m}, 4 \mathrm{H})$, 7.39-7.45 (m, 2H); LC-MS (ESI) m/z 386 ([M+1] ${ }^{+}$).

2-(4-Methoxybenzylamino)-9-phenyl-6,7-dihydrothiazolo[4,5-b]quinolin-8(5H)-one (1y).

Molecular Weight: 415.51
Isolated yield: $24 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.14-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.21(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 6.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-$ $7.25(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.48(\mathrm{~m}, 3 \mathrm{H}) ;$ LC-MS (ESI) $\mathrm{m} / \mathrm{z} 416\left([\mathrm{M}+1]^{+}\right)$.

9-Phenyl-2-(propylamino)-6,7-dihydrothiazolo[4,5-b]quinolin-8(5H)-one (1z).

Molecular Weight: 337.44

Isolated yield: 20%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.72(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $2.16(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.38-3.47(\mathrm{~m}, 2 \mathrm{H}), 5.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 7.24-7.26 (m, 2H), 7.40-7.47 (m, 3H); LC-MS (ESI) m/z 338 ([M+1] ${ }^{+}$).

9-Phenyl-2-(pyrrolidin-1-yl)-6,7-dihydrothiazolo[4,5-b]quinolin-8(5H)-one (1aa).

Molecular Weight: 349.45

Isolated yield: $18 \% .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.05-2.09(\mathrm{~m}, 4 \mathrm{H}), 2.16(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.22(\mathrm{t}, J=6.3,2 \mathrm{H}), 3.28-3.39(\mathrm{~m}, 2 \mathrm{H}), 3.76-3.92(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.47$ (m, 3H); LC-MS (ESI) $m / z 350\left([\mathrm{M}+1]^{+}\right)$.

2-Morpholino-9-phenyl-6,7-dihydrothiazolo[4,5-b]quinolin-8(5H)-one (1ab).

Molecular Weight: 365.45
Isolated yield: 16%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.17(\mathrm{tt}, J=6.4,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.23(\mathrm{t}, J=6.3 \mathrm{~Hz}, 4 \mathrm{H}), 3.77-3.75(\mathrm{~m}, 4 \mathrm{H}), 3.77-3.81(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.48$ (m, 3H); LC-MS (ESI) m/z 366 ([M+1] ${ }^{+}$).
N-Benzyl-9-(4-methoxyphenyl)-5,6,7,8-tetrahydrothiazolo[4,5-b]quinolin-2-amine (1ac).

Molecular Weight: 401.52
Isolated yield: $37 \%{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.70-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.92(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{t}, J$ $=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 5.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.39(\mathrm{~m}, 5 \mathrm{H}) ;$ LC-MS (ESI) $m / z 402\left([\mathrm{M}+1]^{+}\right)$.

9-(4-Methoxyphenyl)- N-propyl-5,6,7,8-tetrahydrothiazolo[4,5-b]quinolin-2-amine (1ad).

Molecular Weight: 353.48
Isolated yield: 48%. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.69(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $1.71-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.91(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;$ LC-MS (ESI) m / z 354 ([M+1] ${ }^{+}$.

9-(4-Methoxyphenyl)-2-(pyrrolidin-1-yl)-5,6,7,8-tetrahydrothiazolo[4,5-b]quinoline (1ae).

Isolated yield: 32%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.70-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.90(\mathrm{~m}, 2 \mathrm{H}), 2.02-2.05$ (m, 4H), $2.56(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.40-3.63(\mathrm{~m}, 4 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 7.00(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;$ LC-MS (ESI) $m / z 366\left([\mathrm{M}+1]^{+}\right)$.

4-[9-(4-Methoxyphenyl)-5,6,7,8-tetrahydrothiazolo[4,5-b]quinolin-2-yl]morpholine (1af).

Molecular Weight: 381.49
Isolated yield: $34 \% .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.71-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.91(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{t}, J$ $=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.61-3.64(\mathrm{~m}, 4 \mathrm{H}), 3.76-7.79(\mathrm{~m}, 4 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 6.99(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;$ LC-MS (ESI) $m / z 382\left([\mathrm{M}+1]^{+}\right)$.
N-Benzyl-10-(4-methoxypheny)-6,7,8,9-tetrahydro-5H-cyclohepta[e]thiazolo[4,5-b]pyridin-2amine (1ag).

Isolated yield: 40%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.55-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.88$ $(\mathrm{m}, 2 \mathrm{H}), 2.67-2.72(\mathrm{~m}, 2 \mathrm{H}), 3.13-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 5.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.39(\mathrm{~m}, 5 \mathrm{H}) ;$ LC-MS $(\mathrm{ESI}) m / z 416\left([\mathrm{M}+1]^{+}\right)$.
amine (1ah).

Isolated yield: 49%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.58(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{q}, J$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.87(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.69(\mathrm{~m}, 2 \mathrm{H}), 3.11-3.14(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 5.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$; LCMS (ESI) $m / z 368\left([\mathrm{M}+1]^{+}\right)$.

10-(4-Methoxyphenyl)-2-(pyrrolidin-1-yl)-6,7,8,9-tetrahydro-5H-cyclohepta[e]thiazolo[4,5$b]$ pyridine (1ai).

Molecular Weight: 379.52
Isolated yield: 44%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.57-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.87$ $(\mathrm{m}, 2 \mathrm{H}), 2.01-2.04(\mathrm{~m}, 4 \mathrm{H}), 2.66-2.69(\mathrm{~m}, 2 \mathrm{H}), 3.12-3.14(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.59(\mathrm{~m}, 4 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, $7.00(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$; LC-MS (ESI) $m / z 380\left([\mathrm{M}+1]^{+}\right)$.

4-[10-(4-Methoxyphenyl)-6,7,8,9-tetrahydro-5H-cyclohepta[e]thiazolo[4,5-b]pyridin-2yl]morpholine (1aj).

Isolated yield: 38%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.58-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.88$ $(\mathrm{m}, 2 \mathrm{H}), 2.68-2.72(\mathrm{~m}, 2 \mathrm{H}), 3.13-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.64(\mathrm{~m}, 4 \mathrm{H}), 3.76-3.79(\mathrm{~m}, 4 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$,

$$
7.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ; \text { LC-MS (ESI) } m / z 396\left([\mathrm{M}+1]^{+}\right) .
$$

N-Benzyl-5-ethyl-7-(4-methoxyphenyl)-6-methylthiazolo[4,5-b]pyridin-2-amine (1ak).

Molecular Weight: 389.51
Isolated yield: 30%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{q}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 5.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.29(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.38(\mathrm{~m}, 4 \mathrm{H})$; LC-MS (ESI) $m / z 390\left([\mathrm{M}+1]^{+}\right)$.

5-Ethyl-7-(4-methoxyphenyl)-6-methyl- N-propylthiazolo[4,5-b]pyridin-2-amine (1al).

Molecular Weight: 341.47
Isolated yield: 38%. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$,
$1.70(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, $5.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;$ LC-MS (ESI) $\mathrm{m} / \mathrm{z} 342\left([\mathrm{M}+1]^{+}\right)$.

5-Ethyl-7-(4-methoxyphenyl)-6-methyl-2-(pyrrolidin-1-yl)thiazolo[4,5-b]pyridine (1am).

Molecular Weight: 353.48
Isolated yield: 33%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.02-2.04(\mathrm{~m}, 4 \mathrm{H}), 2.16$ $(\mathrm{s}, 3 \mathrm{H}), 2.89(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.45-3.62(\mathrm{~m}, 4 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 7.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$; LC-MS (ESI) $m / z 354\left([\mathrm{M}+1]^{+}\right)$.

4-(5-Ethyl-7-(4-methoxyphenyl)-6-methylthiazolo[4,5-b]pyridin-2-yl)morpholine (1an).

Isolated yield: 29\%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{q}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.62-3.65(\mathrm{~m}, 4 \mathrm{H}), 3.76-3.80(\mathrm{~m}, 4 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 7.01(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$; LC-MS (ESI) $m / z 370\left([\mathrm{M}+1]^{+}\right)$.

N-Benzyl-9-(4-nitrophenyl)-5,6,7,8-tetrahydrothiazolo[4,5-b]quinolin-2-amine (1ao).

Isolated yield: $39 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.73-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.94(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{t}, J$ $=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{t}, J=6.5,2 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 5.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.27-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.52(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 8.34(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$; LC-MS (ESI) $\mathrm{m} / \mathrm{z} 417$ ([M+1] ${ }^{+}$).

N-(4-Methoxybenzyl)-9-(4-nitrophenyl)-5,6,7,8-tetrahydrothiazolo[4,5-b]quinolin-2-amine

 (1ap).

Molecular Weight: 446.52
Isolated yield: $45 \% .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.72-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.93(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{t}, J$
$=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{t}, J=6.6,2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 5.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.34(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$; LC-MS (ESI) m / z $447\left([\mathrm{M}+1]^{+}\right)$.

9-(4-Nitrophenyl)- N-propyl-5,6,7,8-tetrahydrothiazolo[4,5-b]quinolin-2-amine (1aq).

Molecular Weight: 368.45
Isolated yield: $41 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.71(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $1.73-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.93(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $5.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.35(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;$ LC-MS (ESI) m / z $369\left([M+1]^{+}\right)$.

9-(4-Nitrophenyl)-2-(pyrrolidin-1-yl)-5,6,7,8-tetrahydrothiazolo[4,5-b]quinoline (1ar).

Molecular Weight: 380.46
Isolated yield: $35 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.72-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.92(\mathrm{~m}, 2 \mathrm{H}), 2.03-2.07$ $(\mathrm{m}, 4 \mathrm{H}), 2.50(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.42-3.64(\mathrm{~m}, 4 \mathrm{H}), 7.54(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 8.35(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$; LC-MS (ESI) $m / z 381\left([\mathrm{M}+1]^{+}\right)$.

4-[9-(4-Nitrophenyl)-5,6,7,8-tetrahydrothiazolo[4,5-b]quinolin-2-yl]morpholine (1as).

Molecular Weight: 396.46
Isolated yield: $37 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.73-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.92(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{t}, J$ $=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.63-3.66(\mathrm{~m}, 4 \mathrm{H}), 3.77-3.81(\mathrm{~m}, 4 \mathrm{H}), 7.54(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, 2H), $8.35(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$; LC-MS (ESI) $m / z 397\left([\mathrm{M}+1]^{+}\right)$.

N-Benzyl-8-(4-nitrophenyl)-6,7-dihydro-5H-cyclopenta[e]thiazolo[4,5-b]pyridin-2-amine (1at).

Molecular Weight: 402.47
Isolated yield: 24%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.16(\mathrm{tt}, J=7.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.12(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 5.77(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.28-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.68(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 8.35(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$; LC-MS (ESI) $m / z 403$ ([M+1] ${ }^{+}$).

N-(4-Methoxybenzyl)-8-(4-nitrophenyl)-6,7-dihydro-5H-cyclopenta[e]thiazolo[4,5-b]pyridin-2-

 amine (1au).

Molecular Weight: 432.49
Isolated yield: 27%. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.16(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 5.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.35(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$; LC-MS (ESI) $\mathrm{m} / \mathrm{z} 433\left([\mathrm{M}+1]^{+}\right)$.

8-(4-Nitrophenyl)- N -propyl-6,7-dihydro-5H-cyclopenta[e]thiazolo[4,5-b]pyridin-2-amine (1av).

Molecular Weight: 354.43
Isolated yield: $31 \% .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.73(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $2.15(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.81(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.35(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$; LC-MS (ESI) $\mathrm{m} / \mathrm{z} 355\left([\mathrm{M}+1]^{+}\right)$.

8-(4-Nitrophenyl)-2-(pyrrolidin-1-yl)-6,7-dihydro-5H-cyclopenta[e]thiazolo[4,5-b]pyridine

 (1aw).

Molecular Weight: 366.44
Isolated yield: 28%. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.05-2.09(\mathrm{~m}, 4 \mathrm{H}), 2.15(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 3.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.50-3.67(\mathrm{~m}, 4 \mathrm{H}), 7.71(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.36(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, 2H); LC-MS (ESI) $m / z 367$ ([M+1] ${ }^{+}$).

4-[8-(4-Nitrophenyl)-6,7-dihydro-5H-cyclopenta[e]thiazolo[4,5-b]pyridin-2-yl]morpholine (1ax).

Molecular Weight: 382.44
Isolated yield: $19 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.16(\mathrm{tt}, J=7.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.65-3.69(\mathrm{~m}, 4 \mathrm{H}), 3.80-3.84(\mathrm{~m}, 4 \mathrm{H}), 7.70(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.36$

$$
(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ; \text { LC-MS (ESI) } m / z 383\left([\mathrm{M}+1]^{+}\right) .
$$

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 a}$.

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 a}$.

LC-MS spectrum of compound $\mathbf{4 a}$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 a}$.

Molecular Weight: 371.50

${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 a}$.

LC-MS spectrum of compound 1a.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 b}$.

LC-MS spectrum of compound $\mathbf{1 b}$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 c}$.

LC-MS spectrum of compound $\mathbf{1 c}$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 d}$.

LC-MS spectrum of compound $\mathbf{1 d}$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1}$.

LC-MS spectrum of compound $\mathbf{1 e}$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 f}$.

LC-MS spectrum of compound $\mathbf{1 f}$.

${ }^{1}$ H NMR spectrum of compound $\mathbf{1 g}$.

LC-MS spectrum of compound $\mathbf{1 g}$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 h}$.

LC-MS spectrum of compound $\mathbf{1 h}$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 i}$.

LC-MS spectrum of compound $\mathbf{1 i}$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1} \mathbf{j}$.

LC-MS spectrum of compound $\mathbf{1} \mathbf{j}$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 k}$.

LC-MS spectrum of compound $\mathbf{1 k}$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 1}$.

LC-MS spectrum of compound $\mathbf{1 1}$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 m}$.

LC-MS spectrum of compound $\mathbf{1 m}$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 n}$.

LC-MS spectrum of compound $\mathbf{1 n}$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 0}$.

LC-MS spectrum of compound $\mathbf{1 0}$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 p}$.

LC-MS spectrum of compound $\mathbf{1 p}$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 q}$.

LC-MS spectrum of compound $\mathbf{1 q}$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 r}$.

LC-MS spectrum of compound $\mathbf{1 r}$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 s}$.

LC-MS spectrum of compound $\mathbf{1 s}$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 t}$.

LC-MS spectrum of compound $\mathbf{1 t}$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 u}$.

LC-MS spectrum of compound $\mathbf{1 u}$.

${ }^{1}$ H NMR spectrum of compound $\mathbf{1 v}$.

LC-MS spectrum of compound $\mathbf{1 v}$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 w}$.

LC-MS spectrum of compound $\mathbf{1 w}$.

${ }^{1}$ H NMR spectrum of compound $\mathbf{1 x}$.

LC-MS spectrum of compound $\mathbf{1 x}$.

${ }^{1}$ H NMR spectrum of compound $\mathbf{1 y}$.

LC-MS spectrum of compound $\mathbf{1 y}$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 z}$.

LC-MS spectrum of compound $\mathbf{1 z}$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound 1aa.

LC-MS spectrum of compound 1aa.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 a b}$.

LC-MS spectrum of compound $\mathbf{1 a b}$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 a c}$.

LC-MS spectrum of compound 1ac.

${ }^{1} \mathrm{H}$ NMR spectrum of compound 1ad.

LC-MS spectrum of compound $\mathbf{1 a d}$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound 1ae.

LC-MS spectrum of compound 1ae.

${ }^{1} \mathrm{H}$ NMR spectrum of compound 1af.

LC-MS spectrum of compound 1af.

${ }^{1} \mathrm{H}$ NMR spectrum of compound 1ag.

LC-MS spectrum of compound 1ag.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 a h}$.

LC-MS spectrum of compound $\mathbf{1 a h}$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound 1ai.

LC-MS spectrum of compound 1ai.

${ }^{1} \mathrm{H}$ NMR spectrum of compound 1aj.

LC-MS spectrum of compound 1aj.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 a k}$.

LC-MS spectrum of compound 1ak.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 a l}$.

LC-MS spectrum of compound $\mathbf{1 a l}$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 a m}$.

LC-MS spectrum of compound $\mathbf{1 a m}$.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1}$ an.

LC-MS spectrum of compound 1an.

${ }^{1} \mathrm{H}$ NMR spectrum of compound 1 ao.

LC-MS spectrum of compound 1ao.

${ }^{1} \mathrm{H}$ NMR spectrum of compound 1ap.

LC-MS spectrum of compound 1ap.

${ }^{1}$ H NMR spectrum of compound 1aq.

LC-MS spectrum of compound 1aq.

${ }^{1} \mathrm{H}$ NMR spectrum of compound 1ar.

LC-MS spectrum of compound 1ar.

${ }^{1} \mathrm{H}$ NMR spectrum of compound 1as.

LC-MS spectrum of compound 1as.

${ }^{1} \mathrm{H}$ NMR spectrum of compound 1at.

LC-MS spectrum of compound 1at.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 a u}$.

LC-MS spectrum of compound 1au.

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 a v}$.

LC-MS spectrum of compound 1av.

${ }^{1} \mathrm{H}$ NMR spectrum of compound 1aw.

LC-MS spectrum of compound 1aw.

${ }^{1} \mathrm{H}$ NMR spectrum of compound 1ax.

LC-MS spectrum of compound 1ax.

